会员
人工沟通与法:算法如何生产社会智能
(意)埃琳娜·埃斯波西托更新时间:2023-08-30 19:15:12
最新章节:译后记开会员,本书免费读 >
本书主要探讨现代社会的算法如何生产社会智能问题。作者埃琳娜·埃斯波西托教授沿袭其导师尼可拉斯·卢曼的“社会沟通”理论,指出机器学习等数字技术不是人工智能,而是“人工沟通”。在算法和人类智能之间进行这种类比是一种误导。如果机器对社会智能有贡献,不是因为它们学会了如何像人类一样思考,而是因为人类学会了如何与它们进行沟通。“人工沟通”意味着人类的沟通伙伴可能不是人类,而是算法。鉴于算法在社会生活的各个领域中的广泛使用,本书深入探索了人类与算法互动、在线网络列表的激增、数字本文分析中的可视化、算法个性化与数字画像、数字记忆与被遗忘权、遗忘图像、算法预测、法律AI的透明度与解释等数字社会的前沿问题。在ChatGPT热潮持续升温的当下,相信本书在帮助中国读者准确了解当代数字社会的同时,也能促进我们对数字法学与计算法学领域前沿问题的深入思考。本书的读者对象包括高校科研作者、人工智能及计算法学相关研究人员、对人工智能算法感兴趣的读者等。
译者:翁壮壮
上架时间:2023-07-01 00:00:00
出版社:上海交通大学出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
(意)埃琳娜·埃斯波西托
主页
同类热门书
最新上架
- 会员
当我点击时,算法在想什么?
我们生活在一个由算法构筑的世界:这些基于数据的算法不仅掌控着社会的运转、筛选着我们的网络见闻,还构成了自动驾驶、智能家居、前沿医疗、智慧城市乃至元宇宙发展的根本。它们是人类步入智能化新纪元的关键驱动力。随着我们对数字技术的依赖日益加深,数学家和数据研究者得以透过它们窥探我们的日常生活。他们通过收集我们的购物记录、消费倾向、兴趣爱好和旅行路径等数据,试图解码我们的日常行为模式。但是,这些数据驱动的分计算机15.2万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字 - 会员
PyTorch深度学习应用实战
《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。计算机15.2万字 - 会员
智能计算系统:从深度学习到大模型
本书由中科院计算所、软件所的专家学者倾心写就,以“图像风格迁移”应用为例,全面介绍智能计算系统的软硬件技术栈。第2版以大模型为牵引进行更新,第1章回顾人工智能、智能计算系统的发展历程,第2、3章在介绍深度学习算法知识的基础上增加了大模型算法的相关知识,第4章介绍深度学习编程框架PyTorch的发展历程、基本概念、编程模型和使用方法,第5章介绍编程框架的工作原理,第6章回顾深度学习所用的处理器结构从计算机34.9万字 - 会员
机器学习
机器学习是计算机科学与人工智能的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算计算机22.7万字 - 会员
深度学习与计算机视觉:项目式教材
本书基于国产自主可控龙芯处理器,系统地介绍计算机视觉领域的基本理论与实践,并结合当前主流的深度学习框架和龙芯平台以项目式教学的形式讲述任务的实施。本书主要包括OpenCV基础功能实战、深度学习框架的部署、计算机视觉技术基础知识、图像分类网络的部署、目标检测网络的部署、图像分割网络的部署、龙芯智能计算平台模型的训练和龙芯智能计算平台的推理部署等内容。通过阅读本书,读者能够了解和掌握深度学习在计算机视计算机10万字 - 会员
人工智能新时代:核心技术与行业赋能
本书以人工智能为核心,上篇讲述了人工智能理论知识及发展蓝图规划,目的是帮助读者认识人工智能,找到入局人工智能领域的途径和方法;中篇罗列了可以为人工智能赋能的前沿技术,包括NLP、机器学习、大数据、物联网、区块链等;下篇总结了人工智能对交通、农业、医疗、制造、教育、金融、文娱等行业的影响和作用,旨在让读者了解人工智能是如何在这些行业实现商业化落地的。本书从多个角度出发,描绘了一幅完整的人工智能发展蓝计算机15.8万字 - 会员
情感计算
在人工智能的研究中,既包括对于人类理性思维的模拟,还包括对人类感性思维的计算。本书重点讲述的文本情感分析技术就属于后者。该技术源于自然语言处理领域,但也有别于一般的自然语言处理任务。文本情感分析面向的处理对象是社交媒体中产生的用户评论文本,该文本的特点是带有大量的用户主观情感信息,因此该技术的核心是通过自动分析评论文本来进行情感的理解。文本情感分析技术已有20余年的研究历史,凝聚成了多项研究任务和计算机23.3万字
同类书籍最近更新
- 会员
空间智能原理与应用
本书从空间信息处理角度出发,将人工智能领域的理论研究与专业实践相结合,完整介绍人工智能方法及其在空间信息处理中的应用,不仅涵盖人工智能领域的基础概念与基本方法,而且探讨知识图谱、计算智能、新兴机器学习、深度学习等前沿技术,同时介绍人工智能在地理文本大数据、遥感影像、激光点云等空间信息处理中的应用实例,具有较强的代表性和启发性。本书可以作为高等院校空间信息与数字技术、遥感科学与技术等专业高年级本科生人工智能23.8万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容人工智能30.2万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI人工智能15.8万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用人工智能8.1万字