![光电信息物理基础](https://wfqqreader-1252317822.image.myqcloud.com/cover/268/655268/b_655268.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.3 矢量微分算子
1. ▽算子
▽算子是一个微分算子,同时又是一个矢量算子,具有微分运算和矢量运算的双重性质。一方面它作为微分算子对它作用的函数求导,另一方面这种运算又必须适合矢量运算法则。本节来说明 ▽算子的运算性质,并给出一些常用公式。必须指出,虽然作为例子用直角坐标系给出了一些公式的证明,但这些公式的正确性与坐标系选择无关。
我们已经给出 ▽算子表示标量场的梯度、矢量场的散度和旋度,即
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739249744-ajwBvv6TyhbcV6x910YFQFlxaDERdZuZ-0-9da22f15a481df0c0024b7d7086be0a2)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739249744-cdz5ONW4DGynMfPigqa0jrNlcxdrg7Kj-0-508ab272dc2e2de815e8aa8eb15bb55d)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0006.jpg?sign=1739249744-utdsTKWgPHEL9mlnAEWOISOwN7FFtI0M-0-196e1b9bf0a8409b9d1101829b6bcef2)
▽算子还可以构成一个纯标量算子,即
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1739249744-vwAxHB6ex9OoIFEGN1uIOpOxHYOpydDi-0-7c20fad0a113c1883b3dae08362df9a7)
称为Laplace算子,其可作用在标量函数和矢量函数上。
2. ▽算子常见计算公式
(1)设u是标量场,则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0008.jpg?sign=1739249744-RBcttZFsKOdf7xD5P0HogivN5bjCR7ah-0-2c10f768bf4d22cb5dbcce3732960a27)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0001.jpg?sign=1739249744-6AEiazBY1d5aAQ3VxZww85LMiUAMbuxq-0-0df0b0eb231810e6638b9b9c5f8487d8)
(2)设u和v是标量,A和B是矢量,则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0002.jpg?sign=1739249744-09cshanGQNKtSs3Y3mIIqsAfqiwBb6ea-0-e37f5e7d9bf7348a71a7cd6798c77e09)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0003.jpg?sign=1739249744-uZw7vQF1nI3kp1ox1Fk1ou7nWxQpjmmi-0-f9b2b0372ac3b7701a296a488dccc553)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0004.jpg?sign=1739249744-WpZ3ncrpFb10nYmeilNythieIZgPc2rh-0-df5b395d97ef20abd3ec7b73fe6af39c)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0005.jpg?sign=1739249744-SVAhlrj9xY84SCXQDGwTIaR1qPyjrY7S-0-dd3f2d134cf356193cd2d258b20ac5a9)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0006.jpg?sign=1739249744-crazGloDWmrClI71xDX2GhQANKtYCEXN-0-6ddc0c965088f0ebfb719ffcb6540a3b)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0007.jpg?sign=1739249744-oRtsNQPShkGtVXRN6sCHNaMgUwNMzskw-0-c6e040bb87a8c8fe74425c7063912599)
(3)关于 ▽的二级微分运算为
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0008.jpg?sign=1739249744-1iyl5iVuz8hIQTgLR4uKdGdtjFRSg61K-0-c3634db4a210f0693f484afe6686d57b)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0009.jpg?sign=1739249744-9YE1vEG11xqQTEyisibOZjAJYwWA1CWo-0-d15d981eee9e191af5cd54dd0e63b8f9)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0010.jpg?sign=1739249744-8zgF0CGI7N0jAHcSqtes3viVqlPQpwQm-0-bbf889c39eb6bcf6b80184b96859e07c)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0011.jpg?sign=1739249744-GWA0i0r6I0aiyTcrT8W6ZpANyXszG6mw-0-d11823ef75402e5fbf6dd79d9eb026d5)
3. 关于场源的一些常用结论
设有场点为r=exx+eyy+ezz,源点为r′=exx′+eyy′+ezz′,且记
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0012.jpg?sign=1739249744-XEM87Kf0NBCayZyHNOUwuvOS4a49Wm3d-0-eca57d9be4c567568dbd813d3768c819)
则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0013.jpg?sign=1739249744-fsFLCkBeJGhmFqg7n1kBONn0qcm9rM2B-0-05854f28aba6fd486be3a0d5bf0fc518)
同时有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0014.jpg?sign=1739249744-bzrwwyu7tTu3iWUi5JNJICxDproWuKaZ-0-14b6a47650bc313858e2906fce1856cc)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0001.jpg?sign=1739249744-6hq5CqkIHdHf3qIfZYOhE8IRKzS22PEk-0-e1b313e43e88bb288a132133179b94db)
4. 高斯定理和斯托克斯定理
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0002.jpg?sign=1739249744-ggNEioYmaF4PHVaE8dPfu78kZKithUOL-0-15c75121c71ec1791ef45a9b3dd8966b)
【例1-4】 计算下列各式的值,其中C为常矢量。
(1)▽·[(C·r)r];(2)▽ ×[(C·r)r];(3)C· ▽ × 。
解:(1)▽·[(C·r)r]= ▽[(C·r)]·r+(C·r)(▽·r)=C·r+3C·r=4C·r
(2)▽ ×[(C·r)r]= ▽[(C·r)]× r+(C·r)(▽ × r)=C × r
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0004.jpg?sign=1739249744-Sk4onWpCtZRRtAB3vpzhf4VEaYJW9xe9-0-fbb92ebdfd9663a60c84a82f6bdd9920)
【例1-5】 求 ▽2 eiK·r,其中K为常矢量。
解:由
▽eiK· r=eiK· r ▽(iK·r)=iKeiK· r
而
▽2eiK· r= ▽· ▽eiK· r= ▽·(iKeiK· r)= ▽eiK· r·iK= - |K|2eiK· r