附录 访谈——梅拉妮·米歇尔谈复杂性
《泛在》杂志(Ubiquity)2011年4月
梅拉尼·米歇尔,1990年在密歇根大学获博士学位,导师是侯世达。她曾在圣塔菲研究所和俄勒冈研究院任职,2004年加入波特兰州立大学,现为波特兰州立大学计算机科学教授和圣塔菲研究所外聘教授,著有《复杂》一书。这本书由牛津大学出版社出版,内容引人入胜、富有启发性,被评为亚马逊网站2009年度十佳科学图书。米歇尔的研究范围涵盖人工智能、机器学习、生物启发计算、认知科学和复杂系统。
《泛在》:先问一个简单的问题,什么是“复杂性”?
米歇尔:这个问题“看似简单”——其实是最复杂的问题!复杂性研究之所以产生,是因为一些学者强烈地感觉到,一些高度“复杂”的自然、社会和技术系统之间具有深刻的相似性。这种系统的例子包括大脑、免疫系统、细胞、昆虫社会、经济、万维网,等等。说它们“相似”,并不是说必然存在掌控这些不同系统的唯一的一组原理,而是说所有这些系统都表现出“适应性的”、“类似生命的”、“智能性的”和“涌现性的”行为。这些术语都没有精确的定义,也使得目前还不可能形式化地定义“复杂系统”。
有一个通俗的复习系统定义:由大量相互作用的组分组成的系统,与整个系统比起来,组分相对简单,没有中央控制,组分之间也没有全局性的通信,并且组分的相互作用导致了复杂行为。这里“复杂行为”指的是前面列出的那些术语(适应性、涌现,等等)。
《泛在》:存在复杂性科学吗?
米歇尔:我认为复杂性研究是不同学科的松散组合,研究复杂系统并寻求厘清这些系统之间的共同原则。100多年前,哲学家和心理学家威廉·詹姆士曾说过,心理学还不是科学,只是“有希望成为科学”。我认为这对于今天的复杂性研究来说也同样成立。我个人尽量避免使用“复杂性科学”(complexity science)一词,而是用“复杂性研究”(the sciences of complexity)。
《泛在》:圣塔菲研究所(SFI)于1984年成立,是复杂系统研究的中心。你是如何加入SFI的?
米歇尔:我当时是密歇根大学的研究生,攻读计算机科学的博士学位,导师是侯世达。我选了霍兰德教授的“遗传算法”课,他是SFI的早期成员之一。我对这个领域产生了浓厚的兴趣,霍兰德邀请我到SFI访问了一个暑假。我迷上了这里,很想找机会再去。在暑期访问大约一年后,我获得了博士学位。当时SFI正好有一个主持“适应性计算”项目的职位。霍兰德再次推荐了我,我在那里全职工作了一段时间,并最终成为研究所的一员。
《泛在》:你又是怎么去波特兰州立大学的?
米歇尔:我在圣塔菲的时候,研究所规定任职期限为五年,不可延期。期限结束后,我和我丈夫想搬到波特兰,我就申请了波特兰的俄勒冈研究院计算机科学的职位。俄勒冈研究院最近与俄勒冈卫生科技大学合并了。我在俄勒冈研究院的第二年,由于研究院目标的一系列变化,我们系的大部分教员,包括我自己,都受邀加入了波特兰州立大学(PSU)的计算机科学系。这是两个系很有趣而且史无前例的合并,PSU的计算机科学系扩大了一倍。
《泛在》:我们马上还会谈到计算机科学,不过能不能首先请你总结一下对复杂性研究有贡献的其他学科?
米歇尔:有很多学科都有贡献,而且数量还在不断增长!可以说几乎科学的所有主要分支对复杂系统研究都有一定的贡献,社会科学、历史和哲学的各分支也是一样。我不能确定边界在哪里。
《泛在》:你的书详细讨论了生物学与复杂性的互动,并将生物学与计算联系起来。信息处理在生命系统中扮演了什么角色?
米歇尔:对这个问题的回答可以写一本书(而且我确实打算以后写一本!)。简单地说就是,信息处理是描述生命系统行为的另一种方式;也就是说,不同于典型的生物学文献中的那种方式。信息处理或计算的框架,能帮助我们统一在生命系统中发现的一些不同特性。在《复杂》中,我讨论了蚁群、免疫系统和细胞代谢,通过将它们的行为都视为“计算”来描述它们的相似性,这样我就能提出在这些非常不一样的生物系统中一些共同的信息处理原理。但是有必要指出,生命系统中的“信息处理”和“计算”的完整概念仍然相当模糊——许多人用这些术语来描述生物现象,但对其的定义或形式化并没有达成共识。有时候很难清楚地知道人们谈论的是什么。
《泛在》:计算机科学应该为这个一般性领域做些什么?
米歇尔:计算机科学可以有许多贡献。计算机仿真是研究复杂系统的核心方法。高性能计算机建模工具和方法对于这个领域的推进具有绝对的重要性。但我认为,计算机科学还有更重要的作用,那就是为思考自然界中的信息处理提供形式化框架。复杂和适应系统的一个标志是以复杂的方式处理信息的能力。例如,整个生物学领域都越来越多地用信息处理的观念来作为理解适应性行为的框架。
我相信计算机科学以及更一般性的计算理论,最终会将目前还不正式而且模糊的信息处理概念形式化。我个人认为信息处理将会成为理解生命系统的一个统一框架。
《泛在》:你的博士论文中介绍了你写的一个能进行类比的计算机程序。写得相当漂亮!
米歇尔:谢谢。这是我仍然在研究的课题。
《泛在》:进行类比与复杂性有什么关系?
米歇尔:进行类比是认知的核心。在这里无法深入阐释,我写的《作为感知的类比》(Analogy-Making as Perception),侯世达的《流动的概念与创造性类比》(Fluid Concepts and Creative Analogies)和即将出版的《表面与本质》(Surfaces and Essences,与伊曼纽尔·桑德合著),都是关于这个主题,书中描述了类比存在于智能核心的许多方式。侯世达和我建立的人们如何进行类比的模型中体现了它与复杂性的关系。这个模型涉及蚁群、免疫系统等复杂生命系统所共有的一些适应性信息处理的重要机制。在我的新书中用了一章来描述其中的关联。
《泛在》:网络科学有什么用途?
米歇尔:网络科学试图研究各学科中的各种网络,并给出共通的原理和方法。当然,网络以各种面目被研究了数百年:图论是对网络的数学研究;社会学家和社会心理学家研究社会网络;工程师研究电力网络和互联网这类技术网络;生物学家研究食物网;遗传学家研究基因调控网络;等等。但大多数时候各学科之间没有相互沟通。最近人们才开始发现这些不同系统之间有趣的共性。例如,20世纪90年代末,瓦茨和斯托加茨给出了网络的“小世界性”的数学定义,并证明了电力网络、线虫的神经网络和演员的社会网络都具有这种特性。此后小世界性得到了深入研究,并在许多学科研究的网络中都有发现。
同样也是在20世纪90年代末,巴拉巴西和艾伯特提出了“无尺度网络”的概念(本质上是具有分形结构的网络),并证明了许多自然和技术网络都具有无尺度结构。由于许多(也许是所有)复杂系统都可以被视为网络,个体(节点)与有限数量的其他个体进行通信(连接),因此网络的交叉学科研究有可能揭示复杂网络的普遍共性。
《复杂》中用了几章来探讨网络科学的内容和影响。巴拉巴西的《链接》(Linked)和瓦茨的《六度》(Six Degrees)都对这门新涌现的学科有很好的介绍。更专业的介绍可以参见纽曼最近写的《网络引论》(Networks:An Introduction)一书。
《泛在》:有一个问题是“无尺度”是否适用于互联网。大卫·奥尔德逊在2009年的《泛在》访谈中提出,互联网以及谷歌云这类互联网上的子系统具有针对性的工程设计,比无尺度模型所预测的更具有稳健性。
米歇尔:奥尔德逊的例子(路由跟踪数据、谷歌服务器)指的是互联网(由服务器和其间的通信连接组成),与我前面提出的万维网的例子不是一个概念(万维网是由超链接组成的逻辑结构),而万维网才被许多人认为具有无尺度性。但大的问题仍然成立;总体上很难判断一个大型网络是否确实是“无尺度的”,还是具有某种其他结构。精确地说,“无尺度”一词指的是具有连接度幂律分布的数学性质。在现实世界中,这个性质只能被近似满足,没有绝对的“无尺度”网络,就像自然界中没有完美的分形一样。因此问题是:在何种程度上我们可以说网络是无尺度的,这种近似对于理解网络的行为有用吗?这是网络科学文献中许多争议的主题,但是有许多经验研究表明,包括万维网在内的许多自然和技术网络具有(近似的)无尺度特性。
《泛在》:依你看,复杂性研究以及计算机科学的总体目标应当是什么?
米歇尔:我认为有两个关联的目标,都还远远没有达到。
首先是发现不同的复杂系统之间的共同原理,从而得到对这些系统的洞察,并产生出分析这些系统的新方法。无尺度网络就是共同原理的一个例子,我们刚刚讨论过。生物学家则借鉴了谷歌的网页排名算法(一种利用了万维网的无尺度结构的计算方法),用来研究食物网中不同物种的重要性,从而更好地认识灭绝的风险,这就是新的分析方法的一个例子。(相关研究可以参见一篇文章:Allesina S,Pascual M, Googling Food Webs:Can an Eigenvector Measure Species’Importance for Coextinctions?PLo S Comput Biol,5(9),2009.)
其次,更具雄心的目标也许是发展出数学理论,以一般性的方式描述复杂性,并对许多不同系统的现象进行解释和预测。例如,有了这样的理论,就有可能以形式化的方式明确昆虫群体、经济系统和大脑等复杂系统所共有的动力学、适应、集体决策和控制以及“智能”背后的机制。这样一个理论应当结合动力系统理论、计算理论、统计物理、随机过程、控制理论、决策论等领域的理论研究。对于是否存在这样一个理论目前都还不清楚,更不要说这个理论是什么样子。
数学家斯托加茨称这个目标为寻找“复杂性的微积分”。从一些方面来看,这个类比很贴切:牛顿、莱布尼茨等人寻找的就是运动的一般性理论,以解释和预测服从物理力的任意物体的动力学,无论是地上的还是天上的。在牛顿之前的时代,这个理论已经有了一些片段(例如,已经存在“无穷小”“导数”“积分”等概念),但还没有人将这些片段合到一起,给出完整的一般性理论来解释以前没有统一认识的各种现象。与此类似,我们也有与复杂系统有关的各种理论片段,但还没有人知道如何将它们合到一起,产生出某种更具一般性和统一性的理论。
《泛在》:你真的认为复杂性的微积分会出现吗?
米歇尔:这种一般性理论曾是20世纪40年代和50年代控制论运动的圣杯;从许多方面来说,目前的复杂系统研究是那场运动的延续。一些批评意见认为复杂系统会与控制论有类似的命运:不能超越建设性的隐喻和分散的片段,无法给出更严格和有用的框架。我个人的看法要乐观一些,但也不好说……复杂性研究还很年轻,还具有很多革新性发展的潜力,我希望它能不断吸引世界上一些最具创造性的年轻学家加入。
http://ubiquity. acm.org/article.cfm?id=1967047
感谢ACM和《泛在》提供中文版权
Copyright 2011 ACM, Inc.