2.2 等效质量、等效刚度、等效阻尼
2.2.1 等效质量
在工程实际中,有时要把具有多个集中质量或分部质量系统简化为具有一个等效质量的单自由度系统。下面介绍几种典型情况下求等效质量的方法。
【例2.5】 如图2.8(a)所示,一弹簧—质量系统若需要考虑弹簧的质量,则其等效质量为多少?设弹簧原长为l,单位长度的质量为ρ。
图 2.8
【解】 弹簧的质量为匀布,它要参与系统振动,可以将其简化,即把它集中到质量块上,如图2.8(b)所示。现按动能等效的原则来获得等效质量,如图(d)所示,取微段ds,其质量
ρds=dm
在ds段处的弹簧位移为 ,速度为 ,微段的动能为
则弹簧的动能为
即弹簧的等效质量是按1/3的弹簧的质量附加到原质量块上。
【例2.6】 如图2.9(a)所示,已知杆的长度为l,质量为m,弹簧的刚度系数为k。求该系统简化到弹簧所在杆端的等效质量。
【解】 依据动能等效原则,有
图 2.9
又 ,则
由几何关系,得
由式(a)和式(b)得
【例2.7】 如图2.10所示系统,一转动惯量为J0的杆件AB,连接有质量块m1和m2,转轴O点距杆A、B端的距离分别为a和b。现求将质量简化到A点的等效质量。
【解】 设等效质量的动能为
而系统的总动能为
【例2.8】 如图2.11所示均质等截面简支梁,在梁中央放置一集中质量m1,梁本身的质量为m2。试求将梁本身质量简化到梁的中央的等效质量。
【解】 已知梁中央处的静载荷为m1g,在其作用下梁的挠度曲线为
图 2.10
图 2.11
式中y、ym皆为时间函数。
由式(a)、式(b)得
设梁的单位长度的质量为ρ,则其动能为
2.2.2 等效刚度
工程系统中,若弹性元件斜向布置或几个弹性元件(或弹簧)以不同方式连接在一起,则必须求得一个与之等效的弹性元件的刚度,称为等效刚度。
1.并联弹簧
把图2.12(a)作为并联弹簧是显而易见的,但对图2.12(b)和(c)有必要略加说明。
图 2.12
图2.12(b)和(c)是并联的,是因为图(b)中k1和k2两弹簧的变形相同,而图(c)中两轴的扭角也相同。
如果F1、F2分别表示图2.12(b)中k1和k2弹簧所受到的力,x为质点m的位移,则
故 ke=k1+k2
2.串联弹簧
串联弹簧中的各弹簧所受力相等,但变形一般却不等(特殊情况下可能相等)。比较图2.13中的(a)、(b)与图2.12中的(b)、(c),可以看出串联弹簧与并联弹簧的差异。
若F为各弹簧中所受到的力,x1和x2分别表示图2.13(a)中两弹簧的变形,则
串联弹簧必须用刚度倒数相加,比较麻烦。可以借助图2.14所示的串联弹簧刚度的合成图解方法求得等效刚度ke。利用几何中的三角形比例关系不难证明作图法中的ke完全符合式(2.1)。
图 2.13
图 2.14
【例2.9】 如图2.15所示系统,已知k1、k2、a、b及m,杆的质量不计,求等效刚度。
【解】 由受力分析知
∑Fy=0,kex=k1x1+k2x2 (a)
∑mC(F)=0,ak1x1-k2x2b=0
由几何关系知
x1=x-aθ (c)
x2=x+bθ (d)
bx1+ax2=(a+b)x (e)
将式(b)、式(c)、式(d)代入式(e),有
将式(e)、式(b)代入式(a),得
图 2.15
【例2.10】 如图2.16所示系统,根据图示参数,求系统的等效刚度ke。
图 2.16
【解】 设k1、k2、k3和圆盘在同一平面内。作用于固定轴的扭转力矩为
【例2.11】 如图2.17(a)、(b)所示系统,已知m、k、EI。求系统的等效刚度。
【解】 图2.17(a)中,悬臂梁的刚度为。质量块m处杆端的挠度和弹簧的变形相等,故图(a)为并联弹簧,其等效刚度为
图 2.17
图2.17(b)中,悬臂梁的刚度同图2.17(a),但杆端的挠度和弹簧的变形不同,载荷却相同,故为串联弹簧,其等效刚度为
可见连接方式略一变更,等效刚度就有明显不同,这是应该引起注意的。
2.2.3 等效阻尼
求等效黏性阻尼系数ce是计算非黏性阻尼的近似方法。解决问题的依据是一个周期内非黏性阻尼所消耗的能量等于等效黏性阻尼所消耗的能量。
设等效黏性阻尼系数为ce,则阻尼力的大小为。系统在振动一个周期里所消耗的能量为
即AR为一周期内阻尼力所做的功。
当激振力F=F0sinωt时,系统作简谐强迫振动,有
x=Bsin(ωt-α)
【例2.12】 试分析干摩擦阻尼情况。
【解】 如图2.18所示,F为常力,其大小不变,方向改变。运动分4个过程,即O→A→O→D→O,每一过程均需消耗能量。
图 2.18
O→A过程摩擦力所做的功为
则全过程中摩擦力所做的功为
AR=4FB
由式(2.2)得其等效黏性阻尼系数
【例2.13】 试分析流体阻尼情况。
【解】 流体阻尼有其自身特点,即当物体以较大的速度在黏性较小的流体中运动时,其阻力为
阻力在一周期内所做的功为
代入式(2.2),则得