![电工36“技”](https://wfqqreader-1252317822.image.myqcloud.com/cover/826/654826/b_654826.jpg)
第1章 电工计算基础
1.1 常用计算公式
1. 展开式
(x+a)(x+b)=x2 +(a+b)x+ab
(a ±b)2 =a2 ± 2ab+b2
(a ±b)3 =a3 ± 3a2b+3ab2 ±b3
(a+b+c)2 =a2 +b2 +c2 +2ab+2bc+2ca
(a+b+c)3 =a3 +b3 +c3 +3a2b+3ab2 +3b2c+3bc2 +3a2c+3ac2 +6abc
a2-b2 =(a-b)(a+b)
a3 ±b3 =(a ±b)(a2∓ab+b2)
a3 +b3 +c3-3abc=(a+b+c)(a2 +b2 +c2-ab-bc-ca)
a4 +a2b2 +b4 =(a2 +ab+b2)(a2-ab+b2)
(ax+b)(cx+d)=acx2 +(ad+bc)x+bd
2. 二次方程式
ax2 +bx+c=0,a、b、c是实数,且a≠0,则该方程的根为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0001.jpg?sign=1739534431-j2HKW7ZbAs3UKF2hjFVxLyLwZeMHTcvZ-0-238e65c3b95377d5de0c89ae8f543413)
且根与系数的关系为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0002.jpg?sign=1739534431-cvHd5sSjvMOGozuyTS7SsbSzfIYdxbEM-0-9bde4ebb11781dbe91ad7cc0537de3ac)
判别式为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0003.jpg?sign=1739534431-o0EJ3uOEriMV6TVujFqBPphYwFSid6LD-0-5bd9e5a6052202ea778a7bf98cba1a87)
3. 指数定则
m、n为正整数,a、b为正实数,则
am ×an=am+n
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0001.jpg?sign=1739534431-hJvojZMKllqe6CuJjWAQxTDdje9jBTK0-0-31a08e9282cc02b019f21a61821307ed)
(am)n=amn
(a×b)n=an ×bn
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0002.jpg?sign=1739534431-y7aq7ox0HWzeLPK80qbGQljWw4aQC8dT-0-cf15791b4251f401c45577232ca2d578)
a0 =1
4. 对数定则
x、y、a、b、c为正实数,则
logaa=1
loga1=0
loga(x·y)=logax+logay
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0003.jpg?sign=1739534431-2LKNsJmkj6FLkVIKKUhcTNDV6GL5L5UF-0-c922a503ccdbfed98618d9f38e61d9b6)
logaxn=nlogax
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0004.jpg?sign=1739534431-p7gwYyXRL6QbNATCi8aEPD8YtZkqhRnh-0-0c1408e6b043b099085d78fb05279fc2)
logax=logab × logbx
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0005.jpg?sign=1739534431-ZSpRGbHxIhIKjnobnry4eVX2xJG6X4Sr-0-81a8a8e138f149702e998b2a79195182)
logab × logba=1
lgx=lge × lnx=0.434 3lnx(其中e=2.718281 8)
5. 级数定则
等差级数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0001.jpg?sign=1739534431-WygNJ4ydVK6yZ0t46OvdEukgwd5jCOxg-0-11c249495ba1ea26168b3fe9c2fbbdf4)
等比级数:a+aq+aq2 +…+aqn-1 ={L-End}
某些数列的前n项和
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0003.jpg?sign=1739534431-v6gEkNnxoiBcbNe0eeb2JkGnnY3tL5tm-0-3346057c3870ad3f5e5a1e7477786b95)
1+3+5+…+(2n-1)=n2
2+4+6+…+2n=n(n+1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0004.jpg?sign=1739534431-cQLkntSqYaO4h4I5d9QUq8zEKrzXiaPZ-0-de53aa95a0338a07c1c6755ae9f69143)
13 +33 +53 +…+(2n-1)3 =n2(2n2-1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0005.jpg?sign=1739534431-AplaJ2JssX5H8FCml6hXp1awRx0DQT1n-0-73b7af809574dc98d5ae5f8f774be5c3)
6. 二项式定理
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0006.jpg?sign=1739534431-jq0YZW4yRaLjhKXTYmP4oI4RNbHuwkje-0-132d961545a4ed995fd2453600a68ff6)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0001.jpg?sign=1739534431-X7s6F7XmJl3qAKa5n3PDIJ4FWIXfc6SL-0-3879a7387eab5e5fe6715e76dd349f37)
7. 近似计算
当a≪1,b≪1时
(1 ±a)(1 ±b)=1 ±a ±b
(1+a)(1-b)=1+a-b
(1 ±a)n=1 ±na
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0002.jpg?sign=1739534431-jYanqz8QZRlogchx2n34lCg5iWEK8HdZ-0-191eea291097534bb05dd02ca64e1e51)
sina=a
cosa=1
tana=a
8. 三角函数表(见表1-1)
表1-1 三角函数表
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0003.jpg?sign=1739534431-UGJtw4Gdm8q2g7EGFmIAo5hTfhZwVtCc-0-66beb54c68808c624930742cda43a10b)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0004.jpg?sign=1739534431-meUu1xqOBNcGBTNwexFOzpo2EJGJym6e-0-ee701768e39a532a5531df056057cba3)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0001.jpg?sign=1739534431-eXl3w6RVrzPF0QDCQtiIiOxPavLB8iHY-0-2e96febb6060ca93e70e63004240c946)
sin2θ+cos2θ=1
1+tan2θ=sec2θ
1+cot2θ=csc2θ
sin(α ±β)=sinαcosβ ± cosαsinβ
cos(α ±β)=cosαcosβ∓sinαsinβ
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0002.jpg?sign=1739534431-ntoqv8s4EAWqTiH5dBIMiPFHEQEEtjUC-0-66bdc4b5fd099f8b66fb43c539ce9f3a)
sin(2α)=2sinαcosα
cos(2α)=2cos2α-1=1-2sin2α
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0003.jpg?sign=1739534431-AS3MNRNwlNPST8TPUmmfbRmYe74lyvc6-0-cfece12013a692945d92aceafd66d6da)
9. 复数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0004.jpg?sign=1739534431-J0tawnyBMgEuWwC61w1p07B6WFiXlXPb-0-582a7e130e99fbd14bdfc4f6a4e02a6e)
复数的三种表示式及其相互关系如下所述。
代数式:z=a+bj
三角式:z=|z|(cosθ+jsinθ)
指数式:z=|z|ejθ
其中,a=|z|cosθ,b=|z|sinθ,{L-End} ,tanθ={L-End}
。
复数的运算:
z1 +z2 =(|z1|cosθ1 +|z2|cosθ2)+j(|z1|sinθ1 +|z2|sinθ2)
z1 ×z2 =|z1||z2|[cos(θ1 +θ2)+jsin(θ1 +θ2)]
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0011_0003.jpg?sign=1739534431-nS1NHSFOe5WQWH3QJ8WvhH7DqEZbcCXe-0-b55126c6ce52b76db5da1c5cde908986)
10. 函数和坐标图
直线方程:y=ax+b
圆方程:(x-a)2 +(y-b)2 =r2
椭圆方程:{L-End}
双曲线方程:{L-End}
抛物线方程:y2 =4ax