![电工36“技”](https://wfqqreader-1252317822.image.myqcloud.com/cover/826/654826/b_654826.jpg)
第1章 电工计算基础
1.1 常用计算公式
1. 展开式
(x+a)(x+b)=x2 +(a+b)x+ab
(a ±b)2 =a2 ± 2ab+b2
(a ±b)3 =a3 ± 3a2b+3ab2 ±b3
(a+b+c)2 =a2 +b2 +c2 +2ab+2bc+2ca
(a+b+c)3 =a3 +b3 +c3 +3a2b+3ab2 +3b2c+3bc2 +3a2c+3ac2 +6abc
a2-b2 =(a-b)(a+b)
a3 ±b3 =(a ±b)(a2∓ab+b2)
a3 +b3 +c3-3abc=(a+b+c)(a2 +b2 +c2-ab-bc-ca)
a4 +a2b2 +b4 =(a2 +ab+b2)(a2-ab+b2)
(ax+b)(cx+d)=acx2 +(ad+bc)x+bd
2. 二次方程式
ax2 +bx+c=0,a、b、c是实数,且a≠0,则该方程的根为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0001.jpg?sign=1739580506-m8PQ6gS0Lt7Sws3c18pXmIH0a13T9OOP-0-fbb1b5e9c18dbc3f269b26daf23303fc)
且根与系数的关系为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0002.jpg?sign=1739580506-TqhR8wGKH00jqsWfN5AQ8xj3Owp8AcTV-0-1da90b91a89bf68071426336d61849ac)
判别式为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0003.jpg?sign=1739580506-dXRojQg1v00Y9qfGkihJNf8ZZTDHwuUO-0-eb3521e2418493efffc1d24b9bbe342a)
3. 指数定则
m、n为正整数,a、b为正实数,则
am ×an=am+n
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0001.jpg?sign=1739580506-bGZr6GQG6eoQOoS4H4fdlOvRFltjF4L5-0-1380ed2c41ed5a121de3c97090284673)
(am)n=amn
(a×b)n=an ×bn
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0002.jpg?sign=1739580506-wi2YrQPfnboJVeC060z0X01vb1vOh1Rz-0-dc244f4a059fcbddff7decbc29389d88)
a0 =1
4. 对数定则
x、y、a、b、c为正实数,则
logaa=1
loga1=0
loga(x·y)=logax+logay
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0003.jpg?sign=1739580506-CMTK8sNV4Xwv2G4K9VqAdzy6AKHCUXRz-0-fd7d46c6656c58b71b0a4401f2b7c40f)
logaxn=nlogax
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0004.jpg?sign=1739580506-tABNdzFUazvMG5UlJH6jTBuBmnzqmNzB-0-e7a4cd21220530b2c36b64f9e94ba813)
logax=logab × logbx
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0005.jpg?sign=1739580506-nk3KO0NRzPIsP6t1RBBiIJNOJxliqzKn-0-eb19af5053041d8ad14d7b5758889f49)
logab × logba=1
lgx=lge × lnx=0.434 3lnx(其中e=2.718281 8)
5. 级数定则
等差级数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0001.jpg?sign=1739580506-D72bVhLiv7uleX4lCYuiuaWywJDVzZqC-0-c393ac3818571946c2d56108a8e802ca)
等比级数:a+aq+aq2 +…+aqn-1 ={L-End}
某些数列的前n项和
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0003.jpg?sign=1739580506-XsqUiZEbbYXWp14EZVsV3kt4thHWBGhU-0-95646e20a990b9f4c6a95cbc3ecf4d95)
1+3+5+…+(2n-1)=n2
2+4+6+…+2n=n(n+1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0004.jpg?sign=1739580506-vZ5FN6jyj7YywGlSAzw530GqiwctQsBF-0-a61c9d3d6bb3cbbfe7c019372df63795)
13 +33 +53 +…+(2n-1)3 =n2(2n2-1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0005.jpg?sign=1739580506-A3fxmBQfiWOjOqtuggKMYWAn2WlGDScn-0-a2130e749061f9f061869f486cec939f)
6. 二项式定理
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0006.jpg?sign=1739580506-ttSnT7iHMgq70StkxAqbHt9F6OsEcvJp-0-d03094efa4bf59ed90ccf63b25926b85)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0001.jpg?sign=1739580506-9rSgOCdQur9bwQFLuJNmqfgcvcK8jkCP-0-296d9b94b7db43139684ade1c95f1821)
7. 近似计算
当a≪1,b≪1时
(1 ±a)(1 ±b)=1 ±a ±b
(1+a)(1-b)=1+a-b
(1 ±a)n=1 ±na
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0002.jpg?sign=1739580506-6tgweruJaeb58Lmjnco9zj0UbJIeVlpH-0-c4cf909db3a5e37bf1f527f2cbbf03ca)
sina=a
cosa=1
tana=a
8. 三角函数表(见表1-1)
表1-1 三角函数表
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0003.jpg?sign=1739580506-5b4FkrF75lzDpAGXGmwzjILlfgPVnRwv-0-9e4ce3aa51318c6ec2e752238c5048b0)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0004.jpg?sign=1739580506-hAVqVZow3sDgRrsQo0TpMXJtRhMscnLD-0-0e681ccf6c761386b27daa195e5aebdf)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0001.jpg?sign=1739580506-dvApddfwfmArKDlrpS6P6257z4JifY6M-0-c7805508120060c3488dd43cad82f232)
sin2θ+cos2θ=1
1+tan2θ=sec2θ
1+cot2θ=csc2θ
sin(α ±β)=sinαcosβ ± cosαsinβ
cos(α ±β)=cosαcosβ∓sinαsinβ
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0002.jpg?sign=1739580506-0DMXyETZ1UCmtxd5YRrAgluVaDvPrg6o-0-98807e5c4724ef44e9ea8025aa5629cb)
sin(2α)=2sinαcosα
cos(2α)=2cos2α-1=1-2sin2α
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0003.jpg?sign=1739580506-PdcSnyXMHVaH6jLLZ4BsKacQgYwNl6tB-0-1ff16c550b39f9e51f24a36fa5bfd7aa)
9. 复数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0004.jpg?sign=1739580506-TNilSEjvWqCzzUKwufrVcpy4OqkuUmY0-0-d86cd18b885d448089ec731af17000c0)
复数的三种表示式及其相互关系如下所述。
代数式:z=a+bj
三角式:z=|z|(cosθ+jsinθ)
指数式:z=|z|ejθ
其中,a=|z|cosθ,b=|z|sinθ,{L-End} ,tanθ={L-End}
。
复数的运算:
z1 +z2 =(|z1|cosθ1 +|z2|cosθ2)+j(|z1|sinθ1 +|z2|sinθ2)
z1 ×z2 =|z1||z2|[cos(θ1 +θ2)+jsin(θ1 +θ2)]
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0011_0003.jpg?sign=1739580506-i8lOQygvuPANMjIHpCGACkA16p9H0d6P-0-58ab6d4579a4382dd269f9b37d48e84f)
10. 函数和坐标图
直线方程:y=ax+b
圆方程:(x-a)2 +(y-b)2 =r2
椭圆方程:{L-End}
双曲线方程:{L-End}
抛物线方程:y2 =4ax