![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.1 直角坐标显式表达举例
以较为一般的泛函为例,其定义在一元函数所在的空间上.函数y=y∗(x)是所要寻求的“极小点”,它是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P33_21408.jpg?sign=1738956615-qFvKyujTzskcTGjgLLiZHxcVUJgIthjm-0-ff709a7c7ea5bf396dd2e4b8fa319399)
的“极小点”.其中的函数F关于变量有足够的可微性,如连续可微.泛函定义在如下连续可导函数集合上:
DF={y∈C1[a, b],y(a)=A, y(b)=B}
对于任意的函数y(x),泛函值Ly≥Ly∗.这里引入摄动函数
h(x):=y(x)-y∗(x)
满足
h(a)=h(b)=0
在此基础上,看泛函值的变化
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21416.jpg?sign=1738956615-tkpg0c5sS83UUklViryMSpgNcdtNiOtb-0-49540d744ae3678182b39dae1544fe2a)
上面最后一个等号用到了分部积分和摄动函数的齐次边界条件h(a)=h(b)=0.
根据极值点,也就是驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21418.jpg?sign=1738956615-wFm7qxCQKXCccpPLCeuVOjE5PLWmUqOG-0-13ed9684a36a5fe17a7c49375c93b725)
即
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21420.jpg?sign=1738956615-6J0L8cvm4MMkRDZSWNClJVUQiSaGABYD-0-74900f7d8317118080002d92ecdc431c)
再利用定理1.5,同时注意摄动函数h(x)的任意性,可以得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21422.jpg?sign=1738956615-UQChKtUu8DlsgqKyfDfgFxMp2PptcQW3-0-1304cf4093f909e3c09f6423bf9c45c2)
此即“极小点”y=y∗(x)满足的必要条件,通常称为欧拉-拉格朗日(Euler-Lagrange)方程.
将式(2-15)用于前文的最速下降线问题.
例2.1 最速下降线问题的解(即质点下降的曲线)满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21423.jpg?sign=1738956615-jm9WK8Fc4B2UbLT742ux6BoE3DzXCWIP-0-4075db8ce0d91b879bc81dcc8a4bc9b3)
解 回顾最速下降线所满足的泛函式(2-4)及其边界条件式(2-5),有
(注意,这里不含变量x)
得到欧拉-拉格朗日方程
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21430.jpg?sign=1738956615-CwYwz1SLuYnwbwxUngCLnC1eNJuOxzvH-0-40ec89671419d2f18014cfe77271e0db)
具体讨论求解.两边乘以函数导数y′得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21432.jpg?sign=1738956615-VOfTyD3BdFojhyssOlDHF9GeL8JZIOwL-0-d5b8f56522d510a25a0d92de875fe6c1)
得到首次积分
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21434.jpg?sign=1738956615-OW9S7MCpw8KaNUinWegdZRZ19WvhfFYL-0-6e0171eaff90af5f21e8490405d92a32)
通分之后,令得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21435.jpg?sign=1738956615-aH1wSVRA0ozJhKbPo7fFMSf3EOfSkSGu-0-79f4ebfeee6a79924283a7299197807b)
根据微积分知识,可以将导数y′理解成曲线切线的斜率,所以记y′=tanθ,这里的θ就是曲线切线与x轴正向夹角.从式(2-17)得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21437.jpg?sign=1738956615-Y2ZVF2NmWaX4taMMrC6QbIMX2EyJYZem-0-c349df5d3fcfc8c133d4e69f22d2e914)
代入y′=tanθ,就有
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21439.jpg?sign=1738956615-cMpkEADoeTz647h5X5c6qRTmCFSmEYs2-0-93fe3e106823d073acb4a52268d15748)
积分后得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21441.jpg?sign=1738956615-1Oilmihsxz993lvnanyS8ryLF6j9zivg-0-59a8161a25305b5bd5c7454ccab5e1f2)
式中,C2为积分常数.引入变量π-t替换2θ,化简式(2-18)和式(2-19),并结合y(0)=0的边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21443.jpg?sign=1738956615-LEeBlP36XCk3qqKmMQDhkL8tuVMwI5Nf-0-0f31874ab8ef93e22b51dca7ef7ee55c)
最后可以通过条件y(X)=Y确定式(2-20),这里略去.或者记r=C/2即可得到式(2-16).式(2-16)或者式(2-20)就是最速下降线满足的曲线方程,如图2-1所示.