![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.2 参数方程表达举例
现在讨论参数方程表示下平面曲线的变分问题.
假设光滑的平面曲线的参数方程表示如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21445.jpg?sign=1739359137-qW4FHrE5dZtN7hjw9uzeTOde6BKHmyuj-0-6621a9f08e197ab94c5beb1b1a398825)
这条曲线L是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21447.jpg?sign=1739359137-84V9rlOPeaR2zPjlozsoTdiTVxAYBJx4-0-30507da43d580d2ffe083cc15514d709)
的“极小点”.为讨论方便起见,假设泛函定义在连续可导函数集合(C1[α, β])2=(C1[α, β])×(C1[α, β])上,集合的元素满足边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21449.jpg?sign=1739359137-8t3YdYUUARqrkNB1dANRZ27NfoJWdWhh-0-769777fe446f66863137616f5e92ec6d)
与直角坐标形式下类似,选取齐次边界条件的摄动函数(组)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21451.jpg?sign=1739359137-ybB2VoG4PBBv9DiDvcb2Wy8q1MaTni8a-0-ec87bda8a416b378d21c2c11ffe8f5ab)
假设L就是极小值函数曲线,那么摄动后的展开式如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21453.jpg?sign=1739359137-LDepZIcEjdxdgkoCrBzl4h666hl6z09N-0-ab46a4f720cc66c21c5a0bdb71abea59)
得到泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21455.jpg?sign=1739359137-mLKbDvKUKQsOXXCGIVlkZFhW4WOXvtTN-0-7aa1ccd803bc6598821c3173ef6b392c)
当ε=0时极小点也是驻点,曲线L满足泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21458.jpg?sign=1739359137-PeYJOq8A0p5f22ZzrRpPJUpA2FLQrr9j-0-b25d057a9074d1737d29a0c2cc86e50b)
这里利用了摄动向量{φ1,ψ1}的齐次边界条件.再利用摄动向量的任意性和定理1.5即可得到泛函式(2-22)的驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21460.jpg?sign=1739359137-PrrIJeUQz6zMu7zZH6A1vkQr4OE8rKYr-0-8df86db10603f333ad425024c6234d81)
这正是曲线在参数方程表示下泛函式(2-22)对应的欧拉-拉格朗日方程.
例2.2 等周问题的解满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21461.jpg?sign=1739359137-jXXtdZMAwdWLSZXtTSTEqjIRjI6c3YDd-0-5b7b3d934c04b5d053ee1465a94f7021)
解 回看等周问题的带有约束的泛函式(2-7)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21462.jpg?sign=1739359137-OrYX33iihvq1ZOHoH8LUweFpRHRgHzQq-0-54de34b58ddb10671befe1694a750d0e)
这里的
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21464.jpg?sign=1739359137-sCBij7XOOhhOxkR2wP7Q31sGvMXAkFas-0-3e18928517a1d302f9f027e9ca4cdd76)
其相应的欧拉-拉格朗日方程变成
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21465.jpg?sign=1739359137-WHrJjCK1k1xgVpt7eJxoIVZUwp9LtvQh-0-4f3e0daabdc03cc45f4bfee2885b871f)
和
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21466.jpg?sign=1739359137-xNGen8iFDx59rJKIAq2U6QK9m8KCRjN0-0-a6839031570d1e8b699913725b10772f)
对两个方程进行首次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21469.jpg?sign=1739359137-EyeeIf5YmUEeJgKMiE7pblm58NyKixfw-0-52d5129391db6d9104b55f3f74ac552b)
分别将上面两式乘以φ′和ψ′,再相加得到
φ φ′-C1φ′+ψ ψ′-C2ψ=0
再次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21519.jpg?sign=1739359137-p2BJQ1Sk5pMD2FATbFIsnfuATDHf3JGE-0-65910fecf102e6cc843f252487159a09)
因此,可得出等周问题的必要解是圆周,也就是式(2-24).式(2-26)中的常数C1、C2和C可以依据边界条件和围成区域的曲线长度确定,这里略去讨论.